Linear perfect codes of infinite length over infinite fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Constraints over Infinite Trees

In this paper we consider linear arithmetic constraints over infinite trees whose nodes are labelled with nonnegative real numbers. These constraints arose in the context of resource inference for objectoriented programs but should be of independent interest. It is as yet open whether satisfiability of these constraint systems is at all decidable. For a restricted fragment motivated from the ap...

متن کامل

Codes over an infinite family of algebras

In this paper, we will show some properties of codes over the ring Bk = Fp[v1, . . . , vk]/(v i = vi, ∀i = 1, . . . , k). These rings, form a family of commutative algebras over finite field Fp. We first discuss about the form of maximal ideals and characterization of automorphisms for the ring Bk. Then, we define certain Gray map which can be used to give a connection between codes over Bk and...

متن کامل

Computing with Matrix Groups over Infinite Fields

We survey currently available algorithms for computing with matrix groups over infinite domains. We discuss open problems in the area, and avenues for further development.

متن کامل

Recognizing finite matrix groups over infinite fields

Article history: Received 12 January 2012 Accepted 10 April 2012 Available online 15 June 2012

متن کامل

Full-Rank Perfect Codes over Finite Fields

In this paper, we propose a construction of fullrank q-ary 1-perfect codes over finite fields. This construction is a generalization of the Etzion and Vardy construction of fullrank binary 1-perfect codes (1994). Properties of i-components of q-ary Hamming codes are investigated and the construction of full-rank q-ary 1-perfect codes is based on these properties. The switching construction of 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sibirskie Elektronnye Matematicheskie Izvestiya

سال: 2020

ISSN: 1813-3304

DOI: 10.33048/semi.2020.17.088